PART I - DESCRIPTION

I-A GENERAL INFORMATION

Comptrol BRT Tensioncells are force transducers especially designed to measure and control web tension on continuous strip processing lines. They are normally installed in applications with segmented measuring rolls requiring more than one support (See Figure 1.)

A BRT Tensioncell consists of a unique combination of two integral systems (one mechanical, the other electrical) for converting the force of strip tension applied to the measuring roll into an electrical signal which is directly proportional to the strip tension.

I-B THE MECHANICAL SYSTEM

The mechanical system consists of a patented “C-Flexure Pivot Assembly” which includes a Load Table, a frictionless elastic pivot or “hinge” and a rugged Base Plate. (See Figure 2.) This assembly allows the deflection of the Load Table to move toward or away from the Base Plate. Deflection toward the Base Plate is defined as the “Compression Mode”, while the opposite is defined as the “Tension Mode”. Two integral adjustable Mechanical Stops are provided to limit the amount of deflection in either mode.

A Viscous Damper is also incorporated in the mechanical system to allow control of the tensioncell's response to rapid changes in apparent tension loads.

Table of Contents

General Information ... 1
Installation and Operation 2
Adjustments ... 3
Troubleshooting ... 4
Dimension Drawing ... 6
I-C THE ELECTRICAL SYSTEM

The electrical system consists of a Linear Variable Differential Transformer (LVDT) which converts the mechanical deflection of the Load Table into a useful electrical output signal. (See Figure 3.) The movable core of the LVDT is mechanically coupled to the Load Table by means of the Core Adjust Assembly. (See Figure 3.) This adjustment is factory set and is not accessible because it is covered by the roll bearing.

I-D TYPE "K" DcLVDT

As illustrated in Figure 4, a DcLVDT consists of the following components:

- A temperature compensated oscillator network, which converts the Dc input voltage into a high frequency alternating current for exciting the primary coil (P₁).
- A Primary Coil (P₁).
- A movable, permeable metallic core.
- Two Secondary Coils (S₁ and S₂).
- A demodulator and summing network to rectify and integrate the currents from the Secondary Coils.

With Comptrol LVDTs, the input and output circuits are electrically isolated from each other and from the mechanical structure of the tension cell. Thus, they may be used in "floating ground" or "ground return" systems. This eliminates the need for extra circuit boards which are required for most straingage loadcells.

Tension cells are factory adjusted to provide an offset voltage with no load applied (no deflection). Using an input of 24 volts Dc, the LVDT is set to provide an output of 3.5 volts into a resistive load of not less than 100,000 ohms. The voltage resulting from the maximum rated deflection then adds to or subtracts from the 3.5 volt offset. This results in an output voltage of 3.5 to 6.5 volts in the Compression Mode and 3.5 to 0.5 volts in the Tension Mode. (See Figure 5.)

While acceptable performance may be obtained over an input voltage range of 6.0 to 30.0 volts Dc, the output voltage will vary in direct proportion to the input voltage. Because of this, the use of a well regulated constant voltage power supply is essential for accurate and repeatable tension measurement.

In standard applications, where one to six Tension cells are used, the inputs may be connected in parallel allowing the Tension cells to be excited from the same power supply. The LVDT outputs are then summed to obtain a signal representing the strip tension and tare loads distributed across the roll.

Comptrol Tensioncell Controls supply 24 volt Dc and integrate one to six output signals in a summing amplifier. This permits incorporation of additional circuitry for offset and tare adjustments, as well as adjustments for balance and gain. (See Control Manual for more information.)
PART II - INSTALLATION AND OPERATION

II-A INSPECTION UPON DELIVERY

Comptrol tensioncells are carefully packaged in sturdy reinforced cartons or wooden boxes and are securely blocked or bolted in place.

1. Upon receipt, examine the exterior of the container for obvious damage or tampering.
2. Check the contents against the packing list.
3. Promptly report any damage or shortage to both the carrier and Comptrol Incorporated.

II-B HANDLING

Tensioncells can be handled manually.

II-C LONG TERM STORAGE

While Comptrol loadcells are plated, exposure to weather, dirt, or moisture should be avoided when they are stored.

II-D MECHANICAL INSTALLATION

NOTE: Refer to the Dimension Drawing on Page 6 of this manual for detailed identification of all parts.

1. Comptrol BRT Tensioncells are drilled and tapped to accept the specified bearing assemblies. (See Calibration Sheet.)
2. Check that the mounting surfaces to which the tensioncells are to be mounted are flat to within 0.002 inch T.I.R.
3. Refer to the loadcell Dimension Drawing on Page 6 for the size, location and orientation of the Base Plate mounting holes to be drilled and tapped in the stands or base structures. (NOTE: When the tensioncells are mounted, the conduit box cover or electrical connector must be accessible.)
4. Drill and tap the holes in the stand or base mounting structure to accept the Tensioncell mounting bolts. (See Dimension Drawing on Page 6.)
5. Assemble the tensioncells to the stands or base mounting structures.
6. Mount the roll and bearing assemblies to the tensioncells.

II-E MECHANICAL ALIGNMENT

Align the sectional measuring roll to avoid any mechanical binding or friction. The measuring roll must be level and perpendicular to the path of the strip material for accurate measurement.

The Mechanical Stops are factory set for the required travel of the Load Table.

II-F ELECTRICAL INSTALLATION

(Read the entire electrical wiring procedure before proceeding.)

1. Turn off all electrical power to the loadcell.
2. Use twisted four conductor signal cable, Beldon 9402, or equivalent in grounded steel conduit to conduct wiring from the LVDTs to the control panel.
3. Observing correct polarity, connect the positive (+) input lead to Pin A and the negative (-) input lead to Pin B. (See Figure 4.)
4. Connect the positive (+) output lead to Pin D and the negative (-) output lead to Pin C. (See Figure 4.)
5. Repeat Steps 1 through 4 of the electrical wiring procedure for the Tensioncells mounted on the other positions.

Type "K" 24 volt DcLVDT Specifications

Input: ... 6-30 volts Dc
Output: 3.5-6.5 volts Dc (nominal, open circuit)
Output Impedence: 2.5K ohms
Current Consumption 40mA
Recommended Load: 100K ohms or greater
Maximum Temp.: 250°F

Note: Comptrol loadcells are calibrated for 24 volt Dc input voltage to provide a 3.5 to 6.5 volts Dc output signal. Output voltage will vary proportionally to input voltage.
II-G ELECTRICAL ZERO ADJUSTMENT

(Read the complete Electrical Zero Adjustment procedure before proceeding with the adjustment.)

1. Disengage strip from the measuring roll so that no tension force is applied to the loadcell.

2. Connect a voltmeter to Pins C and D (See Figure 4.)

3. Apply 24 volt Dc electrical power to the loadcell observing the correct polarity. [Plus (+) to Pin D and minus (-) to Pin C.] Do not exceed the maximum rated input voltage.

NOTE: Allow 20 minutes for the loadcell to warmup before taking first readings to insure accurate readings.

4. Measure the output voltage of the LVDT between the Green and Blue leads for each tensioncell with a voltmeter with a sensitivity of at least 100,000 ohms per volt. The output voltage should be between .5 and 6.5 volts. The end tensioncell will see half the tare weight of the inner cells and will produce a different voltage.

5. Since Comptrol Tensioncells cannot be mechanically zeroed, refer to the Control Manual for zeroing out the tare weight voltage.

II-H FULL LOAD ADJUSTMENT

After the loadcell has been zeroed, a pull test can be made to check the output voltage of the loadcell at full load. (See calibration sheet for voltage output.)

1. Run a non-stretchable rope over the center of each tension roll simulating the web path. (NOTE: the rolls should be free to turn.)

2. With one end of the rope secured, hang a known weight, equally over each roll so that the total tension is equal to the maximum strip tension specified on the calibration sheet, at the other end. (See Figure 5A.)

 For larger tension where dead weights would be too large, a crane scale can be used to simulate maximum strip tension (See Figure 5B.)

3. With a voltmeter connected to Pins C and D of the connector, an output voltage will be observed.

 4. Repeat Step 3 for each of the other tensioncells. Note the change of output voltage for the end tensioncells will be half the voltage for the inner cells.

Comptrol loadcells instrumentation provides the required signal conditioning and a reliable high level output signal for use as feedback control of a tension drive system. The feedback signal is directly proportional to the strip tension applied. If a Comptrol control is used, refer to the control manual for further calibration.

Although the electrical output of Comptrol loadcells are sufficient to drive most electrical indicators, substantial signal conditioning is normally required for effective tension instrumentation system control. Refer to the documentation available from the instrumentation supplier for more information.

PART III - TROUBLE SHOOTING

When properly installed in accordance with the original design specifications, Comptrol loadcells should require little or no regular maintenance or service.

Certain conditions, however, can impair their inherently accurate and reliable performance. Therefore, if trouble should arise, the following conditions should be checked.

III-A MECHANICAL

1. Has the tension measuring system been changed?
 a. An increase or decrease in strip tension (Refer to A on the calibration sheet for specified strip tension.)
 b. An increase or decrease in the wrap angle. (Refer to B on the calibration sheet for the specified wrap angle.)

 If the above parameters have been changed enough to prevent the unit from operating within the limits of the factory adjusted Mechanical Stops, replacement of the Flexure will be required. For this modification, the Tensioncell should be returned to the factory with complete specifications.

2. Are the loadcells mounted securely?
 a. Base Plate to mounting stand?
 b. Bearing support to Load Table?

(Continued on Page 7)
WEIGHTS FOR MAX. TENSION

WEB PATH

ROLL

LOADCELL

REFER TO CALIBRATION SHEET FOR PROPER MOUNTING OF LOADCELL

Figure 5A

WEB PATH

SCALE

LOADCELL

ROLL

REFER TO CALIBRATION SHEET FOR PROPER MOUNTING OF LOADCELL

Figure 5B
Capacity 1000 LBS. Max.

PATENTED

NOTE:

1. Surfaces "A" & "B" to be in line within .002 T.R. and perpendicular with Surfaces "C" & "D" within .002 / R.

2. Thickness of Spring section determines the load required to yield 3.0V output changes from the LVDT. Springs are factory ground as required.
3. Is tension measuring roll in proper alignment and does it turn freely?

4. Are bearings and seals free of all binding and stickiness? Are they worn?

III-B ELECTRICAL

1. Are LVDTs receiving correct input voltage?
 Check line voltage, fuses or circuit breakers, and power switches. Check power supply output and voltage to LVDTs.

2. Are all connections secure?
 Check for continuity. Retighten all connections. Recheck operation.

3. Are LVDTs open or shorted.
 To check, turn off power and disconnect the input and output leads. Check coil continuity and resistance. (Refer to Figure 4.)
 a. Pin A to Pin B (Primary Coil) should be in excess of 2 megohms.
 b. Pin A or Pin B to LVDT shell should be in excess of 5 megohms.
 c. Pin C to Pin D (Secondary Coil) should be approximately 20,000 ohms.
 d. Pin C or Pin D to LVDT shell should be in excess of 5 megohms.

If LVDT circuits are open or shorted, replace LVDT. Replacement units are available from the factory. Contact Comptrol with loadcell model number and serial number.

The information contained in this document is subject to change without notice. Comptrol Incorporated has made every effort to insure the accuracy and completeness of the descriptions and procedure discussed in this document. Failure to comply with these procedures may result in personal injury or damage, the Comptrol product, or the equipment used in conjunction with it.

Comptrol Incorporated assumes no liability for incidental or consequential personal or equipment damages arising from the use of this document, the software and hardware described, or failure to comply with the procedure contained in this document.

Note that protective covers or guarding may not be shown in some illustration to provide a clearer view of specific components or assemblies. All protective covers and guarding must be installed before operating the unit.

Reproduction, copying, or the disclosure to any third party for any unauthorized purpose, of the contents or software contained or described in this document is prohibited without authorization from Comptrol Incorporated. Violators will be prosecuted.
COMPTROL MANUFACTURED PRODUCTS

BALLSCREW PRODUCTS
- Inch and metric rolled thread ball screws
- Precision ground ball screws
- Single and preloaded ballnuts for base, flange, cut-off flange, or trunnion mounting
- Base, flange, or cut-off flange mounted end bearing supports
- Custom and modified units also available

COMPLETE BALLSCREW PACKAGES
Comptrol complete ball screw packages feature standard pre-engineered Comptrol products to provide ready-to-install ball screw "package" consisting of the ball screw, ballnut, and end mounting bearing supports. Custom and modified standard assemblies are also available.

HIGH SPEED LINEAR POSITIONERS
Comptrol industrial linear positioners for applications requiring stroke lengths up to 36 inches, load capacities up to 5,000 pounds, and speeds up to 50 inches per second.

QUALITY VERIFICATION SYSTEMS

Comptrol Rod and Piston Systems
An industry standard for over 20 years in reciprocating engine plants around the world, Comptrol Connecting Rod and Piston Balancing Systems provide an accurate, high speed method of weighing and balancing connecting rods and pistons on automatic engine transfer lines.

Comptrol Weighcells Systems
Ideal for automatic assembly and packaging systems, Comptrol weighcells provide a high speed, continuous method of monitoring of process quality. These systems can detect weight deviations within 0.1 gram of the ideal weight in 0.8 seconds.

TENSION MONITORING SYSTEMS
Comptrol tension monitoring systems are designed to measure and control strip or web tension of continuous process lines. Available in over 30 models with capacity ranges from 4 to 80,000 pounds, these units are ideal for new, replacement and retrofit applications.

COMPTROL TECHNICAL SUPPORT

ENGINEERING
- Application Assistance
- Mechanical Design
- Electrical Design
- Software Design

CUSTOMER SUPPORT
- Field Service Support
- Project Planning
- Installation Supervision and Assistance
- Installation Inspection
- Documentation

MANUFACTURING
- Electrical and Mechanical Assembly
- In-house Machining

COMPTROL INCORPORATED
9505 Midwest Avenue Cleveland, Ohio 44125
Phone: (216) 587-5200 Fax: (216) 587-5210

C-149 3/95